
Acta Palaeontol. Pol. 68 (2): 193–212, 2023 https://doi.org/10.4202/app.01033.2022

Editors' choice

Morphological disparity of early ammonoids:  
A geometric morphometric approach to investigate  
conch geometry
NINON ALLAIRE, SAMUEL GINOT, KENNETH DE BAETS, DIETER KORN,  
NICOLAS GOUDEMAND, CLAUDE MONNET, and CATHERINE CRÔNIER

Allaire, N., Ginot, S., De Baets, K., Korn, D., Goudemand, N., Monnet, C., and Crônier C. 2023. Morphological dis-
parity of early ammonoids: A geometric morphometric approach to investigate conch geometry. Acta Palaeontologica 
Polonica 68 (2): 193–212.

Fossils of Devonian ammonoids are abundant and well-preserved in the Anti-Atlas of Morocco; as such they provide 
an invaluable record of regional morphological disparity changes (diversity of shapes) that characterise the first steps of 
ammonoid evolution. However, they were rarely analysed quantitatively with respect to their morphological spectrum. 
Here, we investigated the morphological disparity of the Early–Middle Devonian ammonoids of the Moroccan Anti-
Atlas by analysing the shape of their whorl profile. A geometric morphometric approach based on the acquisition of 
outline semilandmark coordinates was used to analyse the whorl profiles. For comparison, morphometric ratios based on 
classical conch measurements were also analysed to investigate the overall conch geometry. Several standard disparity 
estimators were computed to measure different aspects of morphological disparity fluctuations through time. It appears 
that a major increase in disparity occurred throughout the Early Devonian, followed by fluctuating disparity during 
the Middle Devonian constituting a general decreasing trend. Only the end-Eifelian Kačák Event shows a significant 
decrease in disparity. Thus, the ammonoids explored the range of possible shapes fairly quickly during their initial radi-
ation; however, we found no evidence for an early burst of shape diversity (i.e., the rise does not exceed the expectations 
given diversity). Nevertheless, correlation tests between diversity and disparity time series support that they are partially 
decoupled. The highly resolved biozone record highlights that the increase in disparity began earlier than the increase in 
diversity that characterises the late Emsian.
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Introduction
Ammonoids are extinct cephalopods with an external coiled 
conch; they originated in the Early Devonian (Schindewolf 
1933; Erben 1953, 1960, 1964, 1965, 1966; Becker and 
House 1994; Klug et al. 2008a; De Baets et al. 2013; Becker 
et al. 2019). They descended from the Bactritida, which are 
thought to root in the latest Silurian or earliest Devonian 
Orthocerida (Erben 1966; Kröger and Mapes 2007; Klug et 
al. 2015b). Thanks to their numerous morphological char-
acters, ammonoids constitute an invaluable fossil record 
for documenting macroevolutionary patterns (e.g., Kennedy 
and Cobban 1976; Teichert 1986; House 1988; Brayard et al. 
2009; Monnet et al. 2011, 2015; Korn and Klug 2012; Brosse 
et al. 2013; Tendler et al. 2015).

The initial radiation of ammonoids took place in a 
context of environmental conditions that were repeatedly 
affected by more or less severe crises (Klug et al. 2010). 
Several global events, usually associated with significant 
environmental changes, have been recorded by the study of 
Devonian rocks and fossils. Some of these events severely 
impacted marine life and led to extinction phases (for a 
review of Devonian global events and crises, see Walliser 
1984, 1996; House 1985, 1996a, 2002; Becker et al. 2016). 
House (1989), Saunders et al. (2008), Korn and Klug (2012) 
and Korn et al. (2015) documented changes in the taxonomic 
diversity of Palaeozoic ammonoids. For the time interval 
studied here (Early–Middle Devonian), global reductions 
in ammonoid diversity were recorded for the late Emsian 
(Early Devonian) Daleje Event, the end-Eifelian (Middle 
Devonian) Kačák Event and the Givetian Taghanic Event 
(Middle Devonian; Korn and Klug 2012).

Taxonomic diversity trends can be compared to dispar-
ity (i.e., the diversity of phenotypes) trends; they provide 
a robust framework for discussing evolutionary processes 
and understanding biotic crises (Roy and Foote 1997). To 
achieve that, multivariate ordination methods allow to quan-
tify morphological disparity and provide a convenient way 
to study the variation of shapes without considering the tax-
onomic or phylogenetic context (Foote 1997; Nardin et al. 
2005). They have been successfully applied to various ceph-
alopod groups, such as ammonoids (e.g., Dommergues et al. 
1996; Simon et al. 2010; Korn and Klug 2012; Hoffmann et 
al. 2019), belemnites (Dera et al. 2016; Nätscher et al. 2021) 
and modern coleoids (Neige 2003; Hoffmann et al. 2021).

Classic methods involving linear measurements of the 
conch, as the so-called Raupian parameters (Raup and 
Michelson 1965; Raup 1966, 1967; Korn and Klug 2003), 
enable the calculation of morphometric conch properties. 
This traditional approach allows for the quantification of the 
entire conch geometry; however, it does not allow us to take 
into account all the morphological features that characterise 
the morphology of the conch, such as the degree of whorl 
overlap, the curvature of the flanks and the presence of 
grooves and keels (Korn and Klug 2012). Therefore, a geo-
metric morphometric approach applied to the whorl profiles 

represents an alternative to complement the understanding 
of the conch shape evolution (Korn and Klug 2012). The 
shape of the whorl profile determines two dimensions of the 
space that accommodated the animal’s soft body (but not the 
length of the body chamber) (Klug et al. 2015a; Bucher et al. 
1996; Guex 2003). The preparation of cross sections of am-
monoid conchs is considered a classic method for studying 
this group and provides an immense amount of biometric 
data (Reyment and Kennedy 1991; Korn and Klug 2003, 
2012). The shape of the whorl profile is highly variable in 
ammonoids and it is therefore used in various studies in-
vestigating their changes in morphological disparity (e.g., 
Simon et al. 2010; Korn and Klug 2012; Klein and Korn 
2014; Morón-Alfonso et al. 2021).

Several studies have already examined the morpholog-
ical evolution of Devonian ammonoids, mostly on a global 
level (Korn and Klug 2003, 2012; Monnet et al. 2011; De 
Baets et al. 2012; Korn et al. 2015; Whalen et al. 2020). 
Through the Devonian, rapid coiling trends from uncoiled/
straight ancestors to ammonoids with coiled embryonic 
as well as post-embryonic conchs have been documented 
(House 1996a; Korn and Klug 2003; Klug and Korn 2004; 
Klug et al. 2008a; Monnet et al. 2011; De Baets et al. 2012, 
2013; Naglik et al. 2019). Korn and Klug (2012) and Korn 
et al. (2015) documented the fluctuations in morphologi-
cal disparity through the Devonian using a standard mor-
phometric method based on a modified version of the 
Raupian parameters (Korn 2010). They documented a ma-
jor increase in morphological disparity during the Emsian 
(Early Devonian), followed by a decrease from the Eifelian 
to the Givetian (Middle Devonian). Whalen et al. (2020) 
documented the global fluctuations of ammonoid dispar-
ity through the Palaeozoic based on conch morphometric 
data; in this study they used ammonoids as a model taxon 
to test for the prevalence of early bursts (i.e., accumulation 
of morphological disparity in excess of taxonomic richness; 
see Simpson 1944; Foote 1994, 1997; Hughes et al. 2013; 
Benton et al. 2014). They also captured this pattern of rap-
idly increasing disparity through the Emsian; however, they 
found no evidence for an early burst: After being corrected 
for species richness, the disparity of Emsian ammonoids 
does not exceed the null expectation given the concomitant 
increase in species richness (Whalen et al. 2020).

Furthermore, concerning the extinction events occur-
ring through the studied time interval (Early and Middle 
Devonian), Korn and Klug (2012) and Korn et al. (2015) re-
ported that only the end-Eifelian Kačák event was marked by 
a significant decrease in disparity; they found that changes 
in diversity and disparity were usually decoupled (Korn and 
Klug 2012; Korn et al. 2015). However, the results of Whalen 
et al. (2020) suggest that the majority of Palaeozoic ammonoid 
species-level morphological disparity could be explained by 
species richness alone, contrary to these previous works.

Korn and Klug (2012) were the only ones to investigate 
the morphological disparity of Devonian ammonoids by an-
alysing the shape of the whorl profile using a Fourier anal-
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ysis and a multivariate analysis; they described the evolu-
tion of the morphospace occupation at substage resolution. 
However, changes through time were not quantified using 
disparity indices. With their loosely coiled conchs (i.e., advo-
lute/evolute conchs without whorl overlap), the early Emsian 
ammonoids occupied a very restricted part of the morpho-
space (Korn and Klug 2012). Then, a shift occurred and new 
shapes appeared through the late Emsian and the Middle 
Devonian, with a trend towards more involute conchs with 
increasing whorl overlap degrees (Korn and Klug 2012).

The purpose of our study is to accurately quantify the 
morphological disparity of ammonoids from their origina-
tion in the early Emsian (Early Devonian) to the end of the 
Givetian (Middle Devonian), by investigating the shape of 
the whorl profile using a geometric morphometric approach 
and a broad range of disparity metrics. The novelty of our 
study also resides in the higher temporal resolution (bio-
zone level), in the updated dataset including new data from 
all recent publications documenting early ammonoids from 
Morocco and from specimens prepared and drawn (DK). In 
addition, our study allows to test, at the regional scale, the 
global findings of Whalen et al. (2020) concerning the re-
lationship between morphological disparity and taxonomic 
richness and the occurrence of an early burst pattern. In this 
context, the highly resolved Moroccan biozone record en-
ables to highlight changes that cannot be seen using a lower 
time resolution (i.e., substage or stage resolution).

Abbreviations.—CWI, conch width index; IZR, imprint zone 
rate; PC, principal components; SoR, sum of ranges; SoV, 
sum of variances; UWI, umbilical width index; WER, whorl 
expansion rate; WW, whorl width index. See also SOM 1 
(Supplementary Online Material at http://app.pan.pl/SOM/
app68-Allaire_etal_SOM.pdf).

Material and methods
Data compilation.—Our study is based on the fossil record 
of ammonoids from the Anti-Atlas of Morocco (Fig. 1), an 
area that is well-known for its abundant and well-preserved 
Devonian ammonoid assemblages. In the last decades, 
many papers documenting Early and Middle Devonian am-
monoids from Morocco were published (Becker and House 
2000; Klug et al. 2000, 2008a; Klug 2001a, b, 2002a, b, 
2017; Becker et al. 2004, 2013, 2018, 2019; Becker 2007; 
Bockwinkel et al. 2009, 2013, 2015, 2017; De Baets et al. 
2010; Aboussalam and Becker 2011; Ebbighausen et al. 
2011). These studies provide a comprehensive and valuable 
record of taxonomic diversity and morphological disparity 
of ammonoids through time. Furthermore, working in this 
one area allows for the collection of data with a consis-
tent species-level taxonomic framework and with a precise 
timescale based on the Moroccan ammonoid biozonation 
(Fig. 2). This time interval of around 22.3 million years 
(Walker et al. 2018) has been subdivided into 30 biozones 

based on ammonoids (Klug 2002b; Aboussalam and Becker 
2011; Bockwinkel et al. 2015; Becker et al. 2019). In order to 
synthesise the more general changes in disparity observed 
at the biozone resolution and to visualise global trends, the 
studied time interval is divided into seven timeslices, which 
are also used as a time scale (Fig. 2).

The dataset analysed here is a compilation of drawings 
of whorl profiles (Fig. 3) from specimens illustrated in the 
literature (Chlupáč and Turek 1983; Korn 1999; Klug 2001a, 
2002b; Korn and Klug 2002; Bockwinkel et al. 2009, 2013, 
2015, 2017; De Baets et al. 2010; Aboussalam and Becker 
2011; Ebbighausen et al. 2011; Becker et al. 2013, 2019) and 
from unpublished material (39 whorl profiles belonging to 20 
species). The dataset includes 127 Early and Middle Devonian 
ammonoid species that were documented from the Anti-Atlas 
(dataset available as SOM 2 and 3). Most taxa (~70%) are rep-
resented by several drawings of the whorl profile, which cor-
respond to ontogenetic stages of individual specimens. The 
decision to select only one specimen per species is guided by 
the aim of focusing only on the interspecific variation and not 
intraspecific variation (e.g., De Baets et al. 2013; Hoffmann 
et al. 2019). Some of the species could not be included in our 
analysis because their stratigraphic distribution is unclear or 
because complete whorl profile outlines were not available.

Independently, the conch geometry was also analysed 
on the basis of classical linear measurements of the conch 
(SOM 1; for details, see Korn 2010). For most species (~75%), 
the analysed measurements (see SOM 4) correspond to the 
same specimens from which the whorl profiles were ana-
lysed. From these measurements (SOM 1), five morpho-
metric ratios were calculated (see Korn 2010): Conch width 

Fig. 1. Simplified geological map of Morocco (modified from Klug 2002b). 
The square shows the area where Early and Middle Devonian ammonoids 
are reported (Tafilalt and Ma’der basins).

http://app.pan.pl/SOM/app68-Allaire_etal_SOM.pdf
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Fig. 2. Stratigraphic scheme for the Early and Middle Devonian of the Anti-Atlas of Morocco, showing the distribution of superfamilies through 
time. Ammonoid biozonation from (Klug 2002a; Aboussalam and Becker 2011; Bockwinkel et al. 2015; Becker et al. 2019). Absolute ages from the 
Geological Time Scale v. 5.0 (Walker et al. 2018). “Sobolewia sp. nov.” and “Afromaenioceras sp. nov” have been introduced by Becker et al. (2004), and 
“Lunupharciceras sp. nov.” by Aboussalam and Becker (2011); these new taxa have not yet been formally described but they are mentioned in several 
studies where they are used to establish the biozonation (e.g., Becker et al. 2004; Aboussalam and Becker 2011).
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index (CWI = ww/dm1), umbilical width index (UWI = uw/
dm1), whorl expansion rate (WER = (dm1/dm2)2), whorl 
width index (WWI = ww/wh) and imprint zone rate (IZR = 
(wh-ah)/wh).
Geometric morphometrics.—In our study, the shape of the 
whorl profile is quantified using geometric morphometrics 
with the acquisition of semilandmark coordinates on the 
outline (for a general overview of geometric morphomet-
rics, see Adams et al. 2004, 2013; Zelditch et al. 2012). All 
the functions used here to perform geometric morphometric 
analysis are from the R package Momocs (version 1.4.0; 
Bonhomme et al. 2014). Drawings of whorl profiles are au-
tomatically digitised into a series of 200 curvilinear equally- 
spaced points on the outline, the semilandmarks (Gunz and 
Mitteroecker 2013), by using the function “coo_interpolate”. 
The standardisation of semilandmark data to correct the 
size/scale, position/translation, and orientation/rotation of 
whorl profiles is performed as follow: (i) translation effect 
is removed by centering the outlines (i.e., placing all outlines 
around their centroid, which is the average point of all semi-
landmarks) using the function “coo_center”; (ii) coordinates 
of each outline are scaled by their centroid size using the 
function “coo_scale”; (iii) the starting point of each outline 
(i.e., point located at the intersection between the outline 
and the line passing by the centroid with an angle of π/2) 
is defined using the functions “coo_intersect_angle” and 
“coo_slide”. Then, superimposed coordinates are modeled 
into harmonic coefficients with an elliptical Fourier analysis 
(EFA) (Kuhl and Giardina 1982; Ferson et al. 1985; Crampton 

1995; Lestrel 1997; Haines and Crampton 2000; Bonhomme 
et al. 2014) computed with the function “efourier”. The num-
ber of harmonics to be used for the subsequent analyses is 
selected by default in the function to represent at least 99% of 
the cumulative Fourier harmonic power, in our case this was 
achieved with 6 harmonics. Our scripts are available online 
(https://github.com/sginot/Ammonoids_disparity).
Morphospaces and disparity metrics.—To study the shape 
changes and to quantify the morphological disparity in 
time series, the obtained Fourier coefficients are analysed 
using a principal component analysis; this creates a mul-
tidimensional empirical morphospace (Foote 1991; Budd 
2021). In macroevolutionary approaches, various disparity 
indices have been used to assess the changes in morpho-
logical disparity based on morphospace occupation (Foote 
1991, 1993; Wills et al. 1994; Ciampaglio et al. 2001; Wills 
2001; Guillerme et al. 2020). The computation of different 
types of disparity indices (i.e., size, density and position) 
is essential to catch different aspects of morphological dis-
parity fluctuations through time (Guillerme et al. 2020; 
Hopkins 2022). Here, morphological disparity changes over 
time are analysed using five indices: sum of ranges (SoR) 
and convex hull area (i.e., size-based disparity indices); sum 
of variances (SoV) and mean squared Euclidean distance 
from centroid (i.e., density-based disparity indices); and 
average displacement (i.e., position-based disparity index). 
Confidence intervals are computed by randomly resam-
pling with replacement points in the morphospace (1000 
iterations) and extracting the 2.5 and 97.5 percentiles of the 

Fig. 3. Ammonoid morphology and dataset. A. Morphology of an ammonoid; as an example, the outline of the whorl profile taken at the maximum conch 
diameter is highlighted by a thick black line (modified from De Baets et al. 2010). B. Dataset analysed here; compilation of drawings of whorl profile 
outlines corresponding to Early and Middle Devonian ammonoids from Morocco.
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distribution (Foote 1991). The partial morphological dis-
parity (i.e., sum of mean squared Euclidean distance from 
centroid per superfamilies) is computed using the method of 
Foote (1993). Disparity indices are calculated for each of the 
seven studied intervals constituting the Early and Middle 
Devonian, as well as for each of the 30 biozones (Fig. 2). 
To compute disparity indices, we produced our own custom 
code (available at https://github.com/sginot/Ammonoids_
disparity) based on formulas from Foote (1993), Wills et 
al. (1994), Wills (2001) and Guillerme et al. (2020). All 
analyses are calculated using the scientific environment R 
(version 3.3.0, R Core Team 2016).

In order to compare traditional morphometrics based 
on linear measurements of ammonoid conchs to geomet-
ric morphometrics, the five conch morphometry ratios are 
ordinated using a principal component analysis to produce 

another morphospace, which is quantified similarly to the 
EFA-based morphospace (see disparity indices above).

In addition, for the two datasets, we applied the model of 
Whalen et al. (2020) to investigate the relationship between 
disparity and diversity, and to test the occurrence of an early 
burst pattern. This approach allows us to compare the mea-
sured disparity (estimated using the convex hull area cal-
culated for PC1 and PC2) with the expected disparity cor-
rected for species richness computed by applying the null 
model of Whalen et al. (2020). This null distribution of dis-
parity values is basically computed from iterated shuffling 
of the morphospace, which maintains the number of points 
for each time bin, but modifies the corresponding points by 
randomly assigning real data values to different taxa. For 
details, see the original article and our custom code.

Fig. 4. Morphospace occupation observed for the Early and Middle Devonian, based on the analysis of the whorl profiles, with representative examples 
of shapes. The first two axes explain 95.7% of the variance.
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Results
Morphospace and morphological changes.—The two first 
principal components for the whorl section profiles explain 
95.7% of the total variance (PC1 = 67.3%; PC2 = 28.4%; 
Fig. 4). Along the first axis, the shape variation is associated 
with the degree of whorl compression, which corresponds 
to the relative width of the whorl profile compared to its 
height. The distribution of the whorl profiles along PC1 co-
varies with the whorl width index (WWI; see SOM 5). Low 
PC1 values represent more compressed whorl profiles (whorl 
higher than wide, low WWI); towards high PC1 values, the 
whorl profiles are increasingly depressed (whorl wider than 
high, high WWI) (Fig. 4, SOM 5). Along the second axis, 
shape variation is related to the degree of whorl overlap. The 
distribution of the whorl profiles along PC2 covaries with the 
imprint zone rate (IZR; see SOM 5). Low PC2 values repre-
sent a lower overlap (more evolute conchs, low IZR); towards 
high PC2 values, the degree of overlap is increasing (more 
involute conchs, high IZR) (Fig. 4, SOM 5). In summary, 
morphological gradients can be seen along PC1 and PC2, 
respectively, from compressed to depressed whorl profiles 
(PC1), with a very low to very high degree of overlap (PC2).

Considering the Emsian as a whole, the occupied morpho-
space already shows a wide range of morphologies, from very 
compressed to very depressed, with a degree of overlap from 
absent (gyroconic and advolute conchs) to moderate (subinvo-
lute conchs) (Figs. 4, 5). However, the morphospace occupa-
tion is rather low in the first Emsian interval (Fig. 6: EMS-1, 
SOM 6: biozones 1–3), which is only produced by the ances-
tral ammonoid superfamily Mimosphinctoidea. The species 
of this superfamily show a very small range of morphologies 
(Fig. 6), usually with a compressed whorl profile and without 
whorl overlap (gyroconic to advolute conchs). During the 
second Emsian interval (Fig. 6: EMS-2, SOM 6: biozones 
4–6), the morphospace occupation increased, caused by the 
emergence of the Mimagoniatitoidea, which are characterised 
by a wider morphological spectrum. Their diversification led 
to an expansion of morphospace to both higher and lower PC1 
values (more compressed/more depressed whorl profiles), 
and towards slightly higher PC2 values (higher overlapping 
degree). The last Emsian interval (Fig. 6: EMS-3, SOM 6: 
biozones 7–9) records a significant increase in morphospace 
occupation. While the Mimosphinctoidea disappeared, the 
morphological range of the Mimagoniatitoidea increased and 
the Anarcestoidea appeared with their wide broad morpho-
logical spectrum (Fig. 6).

Fig. 5. Diagrams showing the morphospace occupation observed for the 
three stages constituting the Early and Middle Devonian (A–C), with level 
contours and density curves; based on the analysis of the whorl profiles. The 
grey dots correspond to the data recorded for the entire studied time interval 
(Early and Middle Devonian); the black dots refer to the data recorded for 
each of the studied stage (respectively, Emsian, Eifelian, and Givetian). The 
colours refer to the density of the data in the morphospace; the red-yellow-
white gradient indicates the decreasing density of occupied areas. Compare 
also with density curves (in grey) above and to the right of the diagrams.
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During the Eifelian, a large part of the total morphospace 
was occupied; even after the disappearance of the most 
compressed early Emsian forms, leaving the bottom-left 
corner of the morphospace unoccupied (Figs. 4, 5). The first 
Eifelian interval (Fig. 6: EIF-1, SOM 7: biozones 10–14) 
shows an expansion of the morphospace towards lower PC1 
scores (more compressed conchs), caused by the emergence 
of the Agoniatitoidea, which mainly explored the middle left 
part of the morphospace. This means that new shapes with 
very compressed whorl profiles and a higher degree of over-
lap appeared (Figs. 4–6). Very involute forms characterised 
by a very high overlap degree, causing a horseshoe-shaped 
whorl profile, appeared within the Agoniatitoidea (top-
most part of the morphospace; Fig. 6). During the second 
Eifelian interval (Fig. 6: EIF-2, SOM 7: biozones 15–19), 
morphospace occupation became more restricted with the 

extinction of the Mimagoniatitoidea. The origination of the 
Tornoceratoidea did not lead to any changes in the morpho-
space; they plot in the same area with some species of the 
Agoniatitoidea and the Anarcestoidea (Fig. 6).

During the Givetian, the density of documented shapes 
in the morphospace increased significantly towards high 
PC2 scores (Fig. 5), highlighting the diversification of forms 
characterised by a higher degree of overlap (Fig. 4). With 
the disappearance of the most compressed forms of the 
Agoniatitoidea, the middle left-most part of the morphospace 
became empty (Figs. 4–6), while new forms characterised 
by more depressed whorl profiles diversified (expansion 
of the distribution towards lower PC1 scores; Fig. 6). The 
most depressed forms that were present during the Eifelian 
disappeared with the extinction of the Anarcestoidea; how-
ever, they are partially replaced by the Pharciceratoidea, 

Fig. 6. Evolution of the morphospace occupation 
through the seven intervals constituting the Early 
and Middle Devonian, showing the distribution of 
ammonoid superfamilies; based on the analysis of 
the whorl profiles (on each diagram, the horizon-
tal axis corresponds to PC1 and the vertical axis to 
PC2). See Fig. 2 for interval labels.
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Fig. 7. Evolution of the relative contribution of ammonoid superfamilies to diversity and disparity (mean squared Euclidean distance to the centroid) 
through the Early and Middle Devonian; based on the analysis of the whorl profiles. A. Relative contribution of ammonoid superfamilies to diversity 
(sampled-in-bin). B. Fluctuations of the mean squared Euclidean distance to the centroid (black line with grey area showing the confidence intervals 
computed after 1000 bootstraps) and sampled-in-bin diversity (blue bars). C. Relative contribution of ammonoid superfamilies to disparity (mean squared 
Euclidean distance to the centroid). See Fig. 2 for interval labels.
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Fig. 8. Disparity and diversity fluctuations through the Early and Middle Devonian; based on the analysis of the whorl profiles. A. Sum of ranges (black 
line with grey area showing the confidence intervals) and sampled-in-bin diversity (blue bars). B. Sum of variances (black line with grey area showing the 
confidence intervals) and sampled-in-bin diversity (blue bars). C. Average displacement (black line with grey area showing the confidence intervals) and 
sampled-in-bin diversity (blue bars). Confidence intervals (error bars) are computed after 1000 bootstraps. See Fig. 2 for interval labels.
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Fig. 9. Evolution of the relative contribution of ammonoid superfamilies to diversity and disparity (mean squared Euclidean distance to the centroid) 
through the Early and Middle Devonian ammonoid zones (biozones numbered from 1 to 30, see Fig. 2); based on the analysis of the whorl profiles. 
A. Relative contribution of ammonoid superfamilies to diversity (sampled-in-bin). B. Fluctuations of the mean squared Euclidean distance to the centroid 
(black line with grey area showing the confidence intervals computed after 1000 bootstraps) and sampled-in-bin diversity (blue bars). C. Relative contri-
bution of ammonoid superfamilies to disparity (mean squared Euclidean distance to the centroid).
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which occupied a large part of the morphospace during 
the Givetian (Fig. 6: intervals GIV-1 and GIV-2). The 
Pharciceratoidea emerged in the first Givetian interval (Fig. 

6: GIV-1, SOM 8: biozones 20–24), where they were already 
characterised by a wide range of morphologies, particularly 
in the degree of whorl overlap (Fig. 6). In addition, the new 

Fig. 10. Disparity and diversity fluctuations through the Early and Middle Devonian ammonoid zones (biozones numbered from 1 to 30, see Fig. 2); based 
on the analysis of the whorl profiles. A. Sum of ranges (black line with grey area showing the confidence intervals) and sampled-in-bin diversity (blue 
bars). B. Sum of variances (black line with grey area showing the confidence intervals) and sampled-in-bin diversity (blue bars). C. Average displacement 
(black line with grey area showing the confidence intervals) and sampled-in-bin diversity (blue bars). Confidence intervals (error bars) are computed after 
1000 bootstraps.
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superfamily Gephuroceratoidea appeared; they are located 
in the same area as the Agoniatitoidea, but possessed a 
smaller range of morphology (Fig. 6). The Tornoceratoidea 
still occupied a restricted part in the morphospace where 
they cluster in the central area. During the second Givetian 
interval (Fig. 6: GIV-2, SOM 8: biozones 25–30), the Pharci-
ceratoidea distribution generally expanded towards lower 
PC1 values, due to the presence of more compressed forms. 
The Tornoceratoidea diversified and occupied a larger part 

of the morphospace by expanding their distribution towards 
higher PC1 and PC2 values (Fig. 6). While the area occupied 
by the Agoniatitoidea decreased, the area occupied by the 
Gephuroceratoidea expanded and they showed a relatively 
large range of morphologies.

In summary, a progressive trend towards a higher overlap-
ping degree is observed in the ammonoids from the Emsian 
to the Givetian (Figs. 4, 5). During the three stages, the 
density is relatively high towards high PC1 values (0.2–0.4), 

Fig. 11. Variations of the convex hull area computed for PC1 and PC2, based on the analysis of the whorl profiles through the Early and Middle Devonian. 
Comparison of the measured values with the expected values given diversity, computed by applying the null model of Whalen et al. (2020). A. Fluctuations 
computed at the interval resolution. B. Fluctuations computed at the biozone resolution. See Fig. 2 for interval labels and biozones.
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and towards moderate to low PC2 values (-0.2–0.0) (Fig. 5); 
this trend underlines the dominance of moderately depressed 
whorl profiles with a moderate degree of overlap (average 
morphology in terms of compression and overlap).
Morphological disparity trends.—The squared Euclidean 
dis tance and the SoV (density-based disparity indices; Figs. 
7B, 8B) show a long increasing trend from the early Emsian 
to the late Eifelian, followed by a slow decrease until the late 
Givetian where moderate disparity values are recorded.

The sum of ranges (i.e., size-based disparity indices) 
also records a progressive increase from the Emsian to the 
Eifelian, with very high values being reached in the first 
Eifelian interval. Then the disparity significantly decreased 
and reached moderate values in the first Givetian interval, 
to finally increase in the second Givetian interval to reach 
a level slightly lower than the Eifelian maximum (Fig. 8A).

The position based disparity index (average displacement 
= average distance from centre; Fig. 8C) records high val-
ues during the two first Emsian intervals (EMS-1 and EMS-
2), then the values decreased significantly and remained 
relatively low through the Eifelian and Givetian (intervals 
EMS-3 to GIV-2). This trend reflects the morphospace oc-
cupation change occurring through the late Emsian: with the 
appearance of new conch shapes the ammonoids started to 
explore the central part of the morphospace (Fig. 6). In other 
words, the early Emsian ancestral shapes do not constitute an 
average morphology from which the diversification occurred 
in all directions; we rather have an oriented diversification 
towards positive values of PC1 and PC2 (see Fig. 6).

In summary, in terms of density and size, a global rise 
in disparity is recorded from the Emsian to the Eifelian, fol-
lowed by a decreasing trend occurring from the Eifelian to 
the Givetian (Figs. 7B, C, 8A, B). Variations at the biozone 
resolution show the same global trends (Figs. 9B, C, 10A, B). 
The relatively high disparity recorded in the last Emsian in-
terval (Figs. 7, 8) results in part from the ammonoid species 
occurring in the Sellanarcestes wenkenbachi Zone (biozone 
8; Figs. 9, 10), where a large area of the morphospace is 
occupied (SOM 6). The peak in the first Eifelian interval 
mainly results from the disparity recorded in the Foordites 
veniens and Cabrieroceras crispiforme zones (biozones 11 
and 14; Figs. 7B, C, 8A, B, 9B, C, 10A, B, SOM 7). During 
the Givetian, the highest levels of disparity are recorded in 
late Givetian biozones (Figs. 9, 10, SOM 8).

Some peaks result from the co-occurrence of super-
families with different morphologies (e.g., Anarcestoidea 
and Agoniatitoidea during the Eifelian; Agoniatitoidea, 
Gephuroceratoidea and Pharciceratoidea during the Givetian; 
Figs. 6, 7, 9), while others are associated with the predomi-
nance of one superfamily with an important morphological 
variation (e.g., Mimagoniatitoidea during the second Emsian 
interval; Figs. 6, 7, 9).
Early burst pattern and correlation between disparity and 
diversity—To test for the occurrence of an early burst of 
shape diversity, we applied the approach proposed by Whalen 

et al. (2020). This approach allows to compare the measured 
disparity estimated using the convex hull area computed for 
PC1 and PC2, with the expected variations of this index cal-
culated considering the number of species in each bins (i.e., 
null model; Fig. 11). The measured values of this disparity 
estimator show similar variations as the SoR (Figs. 8A, 10A, 
11), since they both constitute size-based disparity indices. 
Despite the rapid increase in disparity recorded through the 
Emsian, the results do not suggest any evidence for an early 
burst: The disparity of Emsian ammonoids from Morocco 
does not exceed the null expectation given the concomitant 
increase in taxonomic diversity (Fig. 11). It is in fact generally 
lower than expected considering a null hypothesis of random 
appearance of new morphologies in the morphospace.

Correlation tests between the disparity indices and the 
number of species (diversity) were assessed using Pearson’s 
approach (Haining 1991; Pearson 1896); the data were de-
trended using the method of Graeme T. Lloyd (https://www.
graemetlloyd.com/methgd.html) before testing correlations 
(results of the correlations tests are available in SOM 9). At 
the interval resolution (N = 7), the correlation tests fail to find 
significant correlation between species disparity and species 
diversity for all indices (all p-values >0.05; see SOM 9). At the 
biozone resolution (N = 30), the size-based disparity indices 
(i.e., sum of ranges and convex hull area) show significant 
correlations with the number of species (p-values ≤0.010; see 
SOM 9); while for the other indices (i.e., sum of variances, 
squared Euclidean distance and average displacement) the 
correlation tests fail to find a significant correlation with di-
versity (all p-values >0.05; see SOM 9).
Impacts of Early and Middle Devonian events.—The Upper 
Zlíchov Event (late early Emsian) is associated with a global 
minor transgression and with the spreading of hypoxic 
conditions (García-Alcalde 1997; Becker and Aboussalam 
2011; Ferrova et al. 2012, 2013; Aboussalam et al. 2015). In 
Morocco, this event correlates with moderate disparity val-
ues and low taxonomic richness (Figs. 9, 10).

The Daleje Event (early late Emsian) corresponds to global 
sea level rise (House 1985, 2002; Klug 2002a; Ferrova et al. 
2012, 2013; Aboussalam et al. 2015). Although the last rep-
resentatives of the Mimosphinctoidea became extinct during 
this global transgressive event, diversity increased with the 
emergence of the Anarcestoidea (Figs. 9, 10). The size-based 
indices (i.e., sum of ranges and convex hull area, Figs. 10, 11) 
record a significant increase in disparity. The density-based 
disparity estimators (i.e., sum of variances and squared 
Euclidean distance) also show a slight but not significant in-
crease. The average displacement decrease considerably and 
significantly through this time interval (Fig. 10C), reflecting 
the important change in morphospace occupation (SOM 6).

The Choteč Event (early Eifelian) is associated with a 
pulse of eutrophication and with an important turnover ob-
served in many groups of organisms (Chlupáč and Kukal 
1986, 1988). Impressive evidence of sudden flooding asso-
ciated with anoxic facies was documented in the Anti-Atlas 
of Morocco (Becker and House 1994, 2000; Klug 2002a; 
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Becker and Aboussalam 2013). In this time interval, the 
taxonomic richness is rather moderate. The disparity is rel-
atively high in terms of size and density, but low in terms of 
position; no significant changes are recorded (Figs. 9–11).

The Kačák Event (latest Eifelian) is a global extinction 
event (major marine faunal turnover) considered to be caused 
by climate change (House 1996b, 2002; Suttner et al. 2017). 
An occurrence of black shales associated with widespread 
hypoxic/anoxic conditions was documented (Suttner et al. 
2017). The species diversity of the Moroccan ammonoids 
decreased drastically after the Kačák events. In terms of 
morphological disparity fluctuations, the size-based indices 
record a significant decrease after the Kačák Event (Figs. 
10A, 11B); the density-based indices also show a decrease, 
but very slight and not significant (Figs. 9B, 10B). The mor-
phospace occupation become restricted after the Kačák 
Event (compare the two last Eifelian biozones, Agoniatites 
obliquus and Holzpfeloceras circumflexiferum zones, with 
the first Givetian one, Bensaidites koeneni Zone, SOM 7, 
8). Interestingly, the decrease in disparity appears less sharp 
than the decrease in diversity.

The Taghanic Event (middle–late Givetian) corresponds 
to a multi-phased global crisis that led to major turnover in 
many groups of organisms (House 2002; Aboussalam and 
Becker 2011; Turnau 2014; Maillet et al. 2015; Narkiewicz 
et al. 2016). Like other events, it is associated with sudden 
climate changes including greenhouse overheating pulses and 
sea level fluctuations (Aboussalam and Becker 2011; Zambito 
et al. 2012). In the Anti-Atlas, no significant changes are 
recorded in both diversity and disparity of ammonoids; both 
remain rather stable during this time interval (Figs. 9–11).

Discussion
The major pattern highlighted by the geometric analysis of 
ammonoid whorl profiles is a rapid increase in the range of 
whorl profile disparity in early ammonoid evolution, reach-
ing a stabilisation in the late Emsian to early Eifelian (i.e., see 
size and density disparity metrics; Figs. 7B, 8A, B, 9B, 10A, 
B, 11). This might be related to the rapid morphological evo-
lution from loosely coiled or advolute conchs to those with 
increasingly overlapping whorls (Klug and Korn 2004; De 
Baets et al. 2012, 2013). This is consistent with the variations 
of the position-based disparity estimator; a shift is visible 
between the Emsian and the rest of the studied time interval 
(Figs. 8C, 10C). This trend towards a higher degree of whorl 
overlap continued throughout the Givetian, where the invo-
lute forms with high whorl overlap are more diverse (Fig. 5).

The morphospace based on the conch morphometry ra-
tios (SOM 10) also highlights that ammonoids already dis-
played a wide range of morphologies in the Emsian; this 
also shows a trend towards a higher degree of whorl overlap 
from the Early to the Middle Devonian (i.e., exploration of 
the bottom-left part of the morphospace through the Middle 
Devonian corresponding to the appearance of more involute 

conch with a higher degree of overlap, SOM 10). Comparing 
the disparity based on whorl profile and conch morphome-
try ratios, respectively, the same general trends are recorded 
(Figs. 8, 11, SOM 11, 12). At the interval resolution, the size 
and density-based disparity estimators show a rapidly in-
creasing disparity through the Early Devonian followed by 
a moderate and relatively progressive decrease through the 
Middle Devonian (Figs. 8A, B, 11A, SOM 11A, B, 12); the po-
sition-based disparity estimator shows high values in the two 
first Emsian intervals, then the values decrease significantly 
and stay low during the Middle Devonian (Fig. 8C, SOM 11C). 
Despite these similar general trends, however, differences can 
be recognised: regarding the size-based disparity indices, the 
conch morphometry ratio disparity had an earlier maximum 
(late Emsian) than the whorl profile disparity (early Eifelian) 
(compare the variations of the sum of ranges and convex hull 
area for the whorl profiles and conch morphometry ratios, re-
spectively; Figs. 8A, 11A, SOM 11A, 12). The Agoniatitoidea 
that emerged through the early Emsian are characterised by 
a wide range of whorl profile shapes, while range in terms 
of conch morphometry ratios (overall shape of the conch) 
is more restricted. With its extreme shape, Mimotornoceras 
djemeli (represented by the topmost dot in the morphospace, 
see interval EIF-1, Fig. 6), contributes clearly to the high 
disparity values recorded in the first Eifelian interval (Fig. 8).

In ammonoids, the loosely coiled conch constitutes the 
plesiomorphic state of morphology, since they are interpreted 
to have descended from bactritoid ancestors with straight con-
ical or slightly curved conchs (Schindewolf 1933; Erben 1964; 
Korn 2001; Klug and Korn 2004; Kröger and Mapes 2007; 
Klug et al. 2015b; Cichowolski and Rustán 2017; Naglik et al. 
2019). De Baets et al. (2012) documented the simultaneous in-
crease in coiling of the inner whorls and the disappearance of 
the umbilical window in several Early Devonian ammonoid 
lineages. These trends, as well as the trend towards a higher 
degree of whorl overlap in the adult stage, may have affected 
the swimming capabilities and fecundity in ammonoids (Klug 
and Korn 2004; De Baets et al. 2012). The repeated coiling 
trends might be a response to increased predatory pressure as 
proposed for various molluscs groups (e.g., Nützel and Frýda 
2003; Kröger 2005; De Baets et al. 2012, 2013; Klug et al. 
2017; Dzik 2020). During the Devonian, various predatory 
groups capable of preying on ammonoids were already well 
established (Whalen and Briggs 2018; Ferrón and Donoghue 
2022). The ammonoid conch geometry can be interpreted 
as the result of tradeoffs between different functional eco-
logical tasks (e.g., hydrodynamics, economy of shell mate-
rial, shell growth, compactness) (Tendler et al. 2015, see also 
Hebdon et al. 2022). The loosely coiled conch is considered 
as an optimised morphology for an economy of shell material 
(Tendler et al. 2015). However, they are mechanically weaker 
and hydrodynamically less favourable; they can be crushed 
more easily by predators than tightly coiled conchs (Brett and 
Walker 2002; Nützel and Frýda 2003; Kröger 2005; Wagner 
and Erwin 2006; Klug 2007; De Baets et al. 2012). Following 
this idea, this trend towards increased coiling of the conch 
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was usually interpreted as the result of adaptative pressures 
coupled with improved hydrodynamics. This allows for a 
higher swimming velocity and improved manoeuvrability 
(Chamberlain 1976, 1981; Klug 2001a; Korn and Klug 2003; 
Klug et al. 2008a, b, 2016; Monnet et al. 2011; De Baets et 
al. 2013; Frey et al. 2014; Naglik et al. 2015; Tendler et al. 
2015), providing an advantage to escape from predators. The 
diversification of vertebrate nektonic predators, including 
fishes, and the escalation of their swimming capabilities has 
been demonstrated to be more complex and gradual (Whalen 
and Briggs 2018; Andreev et al. 2022; Ferrón and Donoghue 
2022; Friedman 2022; Zhu et al. 2022) than previously un-
derstood (Klug et al. 2010, 2017). Nevertheless, various or 
repeated pulses of increase in coiling may have occurred in 
conjunction with radiation pulses of active predators (Kröger 
2005). But other factors might be involved; increased coiling 
also correlates with increasing fecundity as well as decreas-
ing embryo size, leading to an increase in reproductive rates 
(Klug 2001a, 2007; De Baets et al. 2012, 2013, 2015; compare 
Ritterbush et al. 2014). It appears likely that tighter coiling 
enhanced swimming and reproductive capabilities of these 
cephalopods. However, the radiation of nekton might have 
been more smeared out (Whalen and Briggs 2018, and Ferrón 
and Donoghue 2022) and this evolutionary tendency towards 
more involute conchs could be also driven by competition 
in a diversity-saturated habitat where abundant planktonic 
food was available (e.g., Klug et al. 2010). It has at least been 
plausibly suggested that many ammonoids, compared to other 
pelagic groups, had a more passive life history with reduced 
mobility potential and reduced capacities for larger prey items 
based on their small estimated buccal masses and hyponomes 
(Walton and Korn 2018).

The changes in conch morphology of early ammonoids 
occurred simultaneously and convergently (or even in par-
allel) in various taxa (Korn and Klug 2003; Kröger 2005; 
Monnet et al. 2011, 2015; De Baets et al. 2013; Klug et al. 
2015b; Naglik et al. 2019). This supports the hypothesis that 
the evolutionary trend towards more densely coiled conchs 
was ecologically driven. In any case, the change in coiling 
modified the syn-vivo shell orientation in such way that the 
aperture became horizontally aligned with the centre of 
mass, which would have enabled the ammonoids to higher 
swimming speeds (Saunders and Shapiro 1986; Klug 2001a; 
Klug et al. 2008a; Hoffmann et al. 2015; Naglik et al. 2015).

Independent of these adaptative explanations, morpho-
logical changes of the early ammonoid conchs might also 
have resulted from a random walk biased by left-wall effects 
(i.e., constructional constraints; Monnet et al. 2011, 2015). In 
that case, the hypotheses about ecological trends mentioned 
above just describe side-effects of other trends; but all these 
explanations may also have worked in concert.

Regarding disparity patterns, Korn and Klug (2012) 
documented an important increase through the Emsian fol-
lowed by a sharp decrease during the Eifelian and Givetian. 
This result was based on linear (conch) measurements. Our 
geometric morphometric analysis of whorl profiles also cap-

tures this general pattern of decreasing disparity through 
the Middle Devonian, but the drop down is not that sharp 
and we can see that the disparity has rather decreased mod-
erately and progressively after the rapid increase observed 
during the Emsian (see the fluctuations at the interval res-
olution, Figs. 7, 8). The significant increase in disparity oc-
curring during the Emsian is recorded based on both conch 
morphometry ratios and whorl profiles (Fig. 8, SOM 11); 
therefore, in the initial phase of their evolutionary history, 
the ammonoids rather quickly explored the range of avail-
able shapes. Interestingly, we can see that this increase be-
gan even earlier than the increase in taxonomic diversity 
that characterises the late Emsian (Figs. 7–10). The results 
of Whalen et al. (2020) show high disparity levels in the evo-
lution of the late Emsian and earliest Givetian ammonoids. 
Our results corroborate the high disparity reached in the 
late Emsian, but do not show any disparity pike in the ear-
liest Givetian (Fig. 10); for the Moroccan ammonoids the 
disparity rather increased later in the late Givetian, and also 
reached a high level in the Eifelian (Fig. 10).

Our results confirm that the ammonoids reached a high 
disparity early in their evolution. However, according to the 
results obtained by applying the test of Whalen et al. (2020) 
for early burst evolution, this rise does not exceed the ex-
pectations given diversity (for the whorl profiles as well as 
for the conch morphometry ratios; Fig. 11, SOM 12). In fact, 
disparity is consistently lower than the values expected under 
the null distribution. This may, however, also suggest that this 
test is overly conservative. Indeed, this might be explained 
by the fact that the null distribution is produced under the 
assumption that any (really sampled) morphology may appear 
for any species in the morphospace, no matter what morphol-
ogies were present in ancestral/related taxa. Therefore, mor-
phologies differing completely from their putative ancestral 
stock of species are allowed to appear, potentially producing 
an overestimate of disparity, when compared for example 
to a Brownian motion. Under Brownian motion, the test of 
Whalen et al. (2020) would have to be modified to account for 
the fact that new morphologies are less likely to appear further 
away from standing morphologies. Such modification would 
certainly decrease the distribution of disparity values, and 
render the test less conservative. Notwithstanding these crit-
icisms, as it stands, the results do not allow us to state firmly 
that the early increase in disparity observed in ammonoids 
corresponds to an early burst pattern or not. Although the 
“early high disparity” model has been documented for many 
animal clades (Foote 1994, 1997; Erwin 2007; Hughes et al. 
2013; Benton et al. 2014; Oyston et al. 2015; Wagner 2018), it 
seems that this trend is not the predominant pattern through-
out the Phanerozoic and that is even rather rare in ammonoids 
(Whalen et al. 2020). The development of a less conservative 
test for this pattern, although outside of the scope of the 
current paper, might help solve this open debate on the preva-
lence of early burst patterns through evolution.

The complex relationship between taxonomic diversity 
and morphological disparity has been widely investigated 
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and debated; some studies showed a decoupling (e.g., Fortey 
et al. 1996; Bapst et al. 2012; Missagia et al. 2023) while oth-
ers demonstrated that the two signals could be coupled (e.g., 
Whalen et al. 2020; Bault et al. 2023). For our two analyses, 
whorl profiles and conch morphometry ratios, correlations 
between taxonomic diversity and the size-based disparity 
indices (i.e., sum of ranges and convex hull area for PC1 
and PC2) are evidenced at the biozone resolution; but for 
all other indices correlation tests failed to find correlation 
with the number of species at both the interval and biozone 
resolutions (SOM 9). According to our results, it appears 
that diversity and disparity are partially decoupled; this may 
be dependent on the type of indices used. As such, studies 
investigating these correlations might benefit from system-
atically including several of these indices.

Conclusions
The disparity signal is complex, and different patterns can 
be caught depending on what type of index and temporal 
to spatial scale we are looking at. According to the size and 
density-based disparity estimators, a significant rise in am-
monoid disparity occurred during the Early Devonian, con-
firming that ammonoids achieved high disparity levels early 
in their evolutionary history. Nevertheless, according to the 
best available testing method used, we found no evidence for 
an early burst pattern: The measured disparity does not ex-
ceed the expectations of the null model. The position-based 
disparity index shows a distinct pattern, compared to the 
other indices; a sharp decrease is recorded from the early 
to the late Emsian, reflecting a shift in the morphospace 
occupation. Thereafter, the disparity fluctuates following 
a general moderately decreasing trend trough the Middle 
Devonian. Among the events occurring during the studied 
time interval, just the Kačák Event appears to have impacted 
the disparity, but only partly: the size-based disparity esti-
mators record a significant decrease after the event, however, 
the other type of indices do not show significant fluctu-
ations. Diversity and disparity appear partially decoupled 
(i.e., correlation tests only reveal significant correlations for 
the size-based disparity indices, at the biozone resolution). 
From the Early to the Middle Devonian, a progressive trend 
towards a higher degree of whorl overlap is recorded. The 
involute conchs with a high whorl overlap are particularly di-
verse in the Givetian; the involute morphologies correspond 
to shapes interpreted to be optimised for hydrodynamic effi-
ciency allowing improved swimming abilities (Tendler et al. 
2015; Klug et al. 2016). This pattern fits well with the pres-
ence of nektonic predators that were already well established 
during the Devonian, which may have induced a selective 
pressure in favour of tighter coiled conchs, more suited to 
changing environments than the Emsian loosely coiled rel-
atives that finally disappeared. The shift recorded by the 
position-based index through the Early Devonian reflects 
this transition towards more involute conchs.
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