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Malformed trilobites have been documented in deposits ranging from the Cambrian to the Permian. Continued exam-
ination of novel malformed specimens provides insight into how trilobites recovered from injuries, experienced genetic
abnormalities, and adapted to pathological conditions. This study focuses on trilobites from the Silurian and Devonian
of Europe, presenting new records of: (i) a moulting-related injury in Lioharpes venulosus; (ii) genetic malformations
in Calymene blumenbachii and Treveropyge sp.; and (iii) a moulting injury or genetic anomaly in Scutellum (Scutellum)
pardalios. Additionally, we record evidence of bryozoan growth on a C. blumenbachii specimen. Our findings provide
important data for contextualizing the paleobiology of early and middle Paleozoic trilobites, especially related to re-
sponses to ecological pressures.
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Introduction

Trilobites are a morphologically disparate group of marine
Paleozoic arthropods that spanned the Cambrian to the
end-Permian extinction (Fortey and Owens 1999; Webster
2007; Hughes 2007; Bault et al. 2022). The biomineralised
dorsal exoskeleton trilobites exhibited resulted in an excep-
tional taxonomic record (Lee et al. 2012; Pérez-Huerta et
al. 2018; Murdock 2020). These exoskeletons also preserve
malformations, providing insight into ecological interac-
tions, developmental anomalies, and evolutionary pressures
experienced by the group (Owen 1985; Babcock 1993, 2003,
2007; Pates et al. 2017; De Baets et al. 2022; Bicknell and
Kimmig 2023), illustrating how trilobites recovered from
injuries, molting issues, genetic malfunctions, or parasites
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(Snajdr 1979, 1981; Babcock 1993; Pates et al. 2017; Pates
and Bicknell 2019; Bicknell and Smith 2021; Bicknell et al.
2022b; De Baets et al. 2022). Documentation of malformed
trilobites therefore enhances our understanding of trilobite
paleobiology. To expand the record of malformed specimens
and build on synthetic works (see Owen 1985; Babcock
1993, 2003; Bicknell and Smith 2022; Zong et al. 2023), we
examined five abnormal trilobites from the Silurian and
Devonian of Europe. In doing so, we illustrate evidence
for injuries, developmental malformations, and interactions
with bryozoans.

Institutional abbreviations—NHMUK PI, Natural History
Museum, Invertebrate Palaecontology Collection, London,
UK; NYSM, New York State Museum, Albany, USA.

https://doi.org/10.4202/app.01229.2024
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Material and methods

Trilobite specimens from the NHMUK PI and NYSM were
examined for potential malformations.

Photographs of the malformed specimens were taken un-
der LED lighting using an Olympus E-M1 Mark III (NYSM)
and a Canon EOS 600D DSLR camera (NHMUK PI). Speci-
mens from the NHMUK PI were photographed without any
coating, while NYSM specimens were treated with ammo-
nium chloride to improve the image contrast. Measurements
of the specimens were obtained from the photographs using
Imagel] software (Schneider et al. 2012).

Terminology.—Malformation: Examples of injuries, patho-
logies, or teratologies observed in trilobite exoskeletons.
Injury: Exoskeletal breakages that occurred while the
organism was alive. Injuries can indicate failed preda-
tion attempts, interactions with environmental hazards,
or complications during molting (Rudkin 1985; Owen
1985; Babcock 1993; Fatka et al. 2015; Bicknell et al. 2018;
Bicknell and Pates 2020). Notably, injuries are usually
localized, while extensive breakages typically reflect
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post-mortem compaction processes (Leighton 2011).
Larger injuries have L-, U-, V-, or W-shapes (Babcock
1993; Bicknell et al. 2022a, 2023b), whereas smaller in-
dentations are typically single spine injuries (SSI) (Pates
and Bicknell 2019; Bicknell and Pates 2020). Additionally,
evidence of cicatrization and repair is frequently present,
although this varies based on the extent of exoskeletal re-
covery (Rudkin 1979; Owen 1985; Babcock 2007; Bicknell
and Paterson 2018).

Teratology: Observable external manifestations of de-
velopmental, embryological, or genetic disturbances in the
exoskeleton (Snajdr 1981; Owen 1985). Although rare, ter-
atological features may coincide with injuries (Owen 1985;
Bicknell et al. 2024a, b). These malformations can include
the addition or loss of nodes, segments, or spines, as well as
irregular rib and furrow shapes (Owen 1985; Bicknell and
Smith 2021, 2022).

Pathology: Malformed exoskeletal regions that reflect
parasitic activity or infections. Such structures typically
present as circular or oval swellings (Snajdr 1978; Owen
1985; De Baets et al. 2022).

Fig. 1. Malformed harpetid trilobite Lioharpes venulosus (Hawle & Corda, 1847), NYSM 19739 from the Konéprusy Limestone, Pragian, Lower
Devonian, Konéprusy, Czech Republic. A, complete cephalon; A,, close up showing U-shaped indentation (arrow). Specimen coated in ammonium
chloride sublimate.
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Results

Lioharpes venulosus (Hawle & Corda, 1847); NYSM 19739.
Konéprusy Limestone, Pragian, Lower Devonian, Konéprusy,
Czech Republic (Fig. 1).

NYSM 19739 is an isolated cephalon that is 26.2 mm
long and 22.3 mm wide with a malformation consisting
of disrupted and irregular pygidial ribs on the right side
(Fig. 1A,). The malformation is a U-shaped indentation in
the marginal rim. The indentation is 5.6 mm long and ex-
tends 1.9 mm towards the midline. Fringe pits proximal to
indentation are irregular, ovate, and occasionally fused into
larger pits.

Calymene blumenbachii Brongniart in Desmarest, 1817,
NHMUK PI In 19857; NHMUK PI In 65061. Much Wenlock
Limestone Formation, Wenlock, Homerian Silurian, England,
UK (Fig. 2).

NHMUK PI In 65061 is an articulated Calymene blu-
menbachii specimen showing a partial cephalon, thorax, and
pygidium. The specimen is 92.9 mm long and 48.6 mm wide
across the cephalon (Fig. 2A,). The specimen has a structure
on the second thoracic axial ring that is an elevated, hol-
low, rounded crater, 1.7 mm in diameter and is covered with
closely spaced pits or openings (Fig. 2A,). The exoskeleton
around the crater is not deformed and the pattern of close-
ly-spaced openings continues across the axial ring.

NHMUK PI In 19857 is an isolated, partial pygidium
that is 13.2 mm long and 18.2 mm wide with a malformation
on the right side (Fig. 2B). Disrupted and irregular pygidial
ribs are observed in this area. Two ribs terminate 1.6 mm
from the pygidial margin (Fig. 2B) and two other ribs are
fused 1.2 mm from the pygidial axis (Fig. 2B).

Treveropyge sp., NYSM 19740. Saint Céneré Formation,
Lochkovian, Lower Devonian, Mayenne, France (Fig. 3).

Fig. 2. Abnormal calymenid trilobites Calymene blumenbachii Brongniart in Desmarest, 1817 from the Much Wenlock Limestone Formation, Homerian,
Wenlock, Silurian, England, UK. A. NHMUK PI In 65061. A, complete specimen; A,, close up showing the large bryozoan growth. B. NHMUK PI In
19857 showing pygidial ribs that terminate early (white arrows) and are fused proximal to the medial lobe (black arrow).
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Fig. 3. Malformed acastid trilobite Zreveropyge sp., NYSM 19740 from the Saint Céneré Formation, Lockkovian, Lower Devonian, Mayenne, France.
A\, complete pygidium; A,, close up showing asymmetrical axial lobe and incomplete axial ring (arrows). Specimen coated in ammonium chloride
sublimate.

Fig. 4. Malformed styginid trilobite Scutellum (Scutellum) pardalios (Whidborne, 1889), NHMUK PI 1 1108 from the Barton Limestone Member, Torquay
Limestone Formation, Givetian, Middle Devonian, England, UK. A;, pygidium preserved as external impression; A,, close up showing fused pygidial
pleurae (arrows).
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NYSM 19740 is an isolated pygidium that is 11.6 mm
long and 17.9 mm wide (Fig. 3A;). The specimen has an
asymmetrical axial lobe (Fig. 3A,). Two axial rings are mal-
formed, slightly curved to the right and extend across ~60%
the axial lobe.

Scutellum (Scutellum) pardalios (Whidborne, 1889),
NHMUK PI T 1108. Barton Limestone Member, Torquay
Limestone Formation, Givetian, Middle Devonian, England,
UK (Fig. 4).

NHMUK PI'T 1108 is an isolated, partial pygidium pre-
served as an external impression that is 59.5 mm long and
44.0 mm wide (Fig. 4). The specimen has a malformation
on the right side (left side in life) (Fig. 4A,). The specimen
shows fusion of two pygidial ribs into a singular rib. Fusion
occurs 29.1 mm from the pygidial axis (Fig. 4A,). The
fused rib terminates 4.8 mm from the pygidial margin.

Discussion

Examining the specimens presented herein revealed evi-
dence of exoskeletal injuries and morphologies indicative of
genetic anomalies. Furthermore, one specimen shows signs
of epibiont interactions. We explore each group of abnor-
malities separately and propose possible explanations for
the observed morphologies.

Injuries.—The examined Lioharpes venulosus has a U-sha-
ped indentation along the cephalic fringe. This morphology
is comparable to malformations in other harpetid trilobites
assigned to injuries (see Warburg 1925; Sinclair 1947; Prantl
and Ptibyl 1954; Snajdr 1979; Owen 1983, 1985; Ptibyl and
Vanek 1986). We, therefore, propose that this malforma-
tion is an injury, expanding the record of injured L. ve-
nulosus (Prantl and Ptibyl 1954; Ptibyl and Vanék 1986).
Determining the injury origin is complicated as injured
harpetid cephala have been attributed to moulting compli-
cations (Owen 1983), failed predation (Snajdr 1979; Owen
1983), and unknown origins (Fatka et al. 2022). The large
cephalic region is commonly considered to have been dam-
aged during moulting, as the soft-shelled exoskeleton was
prone to tearing (Owen 1983, 1985). We align with this
proposal, suggesting that the injury records a complicated
moulting event.

The fringe pits along the injury margin are deformed and
show possible fusion. This recovery system broadly reflects
the pattern proposed for trinucleid trilobites (Snajdr 1979;
Owen 1985), indicating similar exoskeletal growth pathways.
However, the Owen (1985) trinucleid model did not illustrate
larger pits or pit fusion, highlighting subtle differences be-
tween trinucleid and harpetid recovery, despite their parallel
evolutionary adaptations (Beech et al. 2024).

Injuries that remove sections of the cephalic fringe could
significantly affect the functionality of the individual (Owen
1985; Babcock 1993; Bicknell et al. 2018). Harpetid fringes
likely served multiple functions (Pates and Drage 2024;
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Beech et al. 2024) including filtering for food (Fortey and
Owens 1999), sensory roles (Schoenemann 2021), sediment
ploughing (Staffand Reek 1911; Ebach and McNamara 2002),
hydrostatic support (Richter 1920), cephalic reinforcement
(Miller 1972; Ebach and McNamara 2002), burrowing (Pates
and Drage 2024), and enhancing hydrodynamic efficiency
(Pates and Drage 2024). Regardless of the primary func-
tion, a cephalic injury would have been detrimental. We,
therefore, propose that the cephalon would recover relatively
quickly over subsequent moulting events (Owen 1985), as
more critical exoskeletal regions receive priority in regener-
ation (Zong and Bicknell 2022; Bicknell and Cuomo 2024).

Teratologies.—Teratological malformations in trilobites of-
ten reflect the addition, reduction, or deformation of spines,
furrows, ribs, tergites, and nodes (Owen 1985; Babcock 1993,
2007; Bicknell et al. 2023a). In the examined specimens, ter-
atologies in Calymene blumenbachii, Scutellum (Scutellum)
pardalios, and Treveropyge sp. pygidia were documented.
These reflect asymmetry, abnormal axial rings, and fusion
of pygidial ribs, common examples of teratologies in the tri-
lobite fossil record (see Snajdr 1958, 1981; P¥ibyl and Vanék
1973; Strusz 1980; Owen 1985; Budil et al. 2010; Nielsen and
Nielsen 2017; Zong 2021).

The isolated Calymene blumenbachii pygidium shows
irregular and fused ribs. This is comparable to malformed
specimens of Dalmanities pleuroptyx (Green, 1832) (Bick-
nell et al. 2024a: fig. 12), Dechenella macrocephalus (Hall,
1859) (Rudkin 1985: fig. 2), Niobina sp. (Tjernvik 1956: pl.
5:17), and Prionopeltis archiaci (Barrande, 1846) (Snajdr
1981: pl. 5: 4), all of which exhibit significant rib disrup-
tion. Larger teratologies with comparable morphologies are
attributed to major developmental malfunctions (Rudkin
1985). As the teratology is limited to the pleural region, this
was likely a genetic or developmental issue that was not
detrimental to the individual (Owen 1985).

The Treveropyge sp. pygidium has an asymmetrical ax-
ial lobe with two malformed axial rings. These morpholo-
gies are similar to malformed Calliops marginatus Tripp,
1962 (Tripp 1962: pl. 28: 16), Dolicholeptus licticallis Opik,
1982 (Bicknell et al. 2023b: fig. 2E), and Sceptaspis lincol-
nensis (Branson, 1909) (Rudkin 1985: fig. 1E—G). These
minor malformations have been attributed to genetic mal-
functions (Owen 1985; Bicknell et al. 2024a), particularly
incomplete development (Rudkin 1985), or non-functional
somites (Nielsen and Nielsen 2017). We propose that a ge-
netic malfunction occurred for NYSM 19740. As the mal-
formed region is not proximal to vital organs, this teratol-
ogy would not have impacted the individual (Nielsen and
Nielsen 2017).

Scutellum (Scutellum) pardalios (Fig. 4) shows evidence
of two pygidial ribs fusing into one rib distally. As there are
no exoskeletal regions devoid of ornamentation, a condition
expected of failed predation in styginids (Snajdr 1990a, b;
Holloway 1996), we exclude this option here. Most other
malformed styginids reflect molting complications resulting
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in abnormal recovery (Snajdr 1960, 1990b; Erben 1967), ge-
netic malfunctions (Holloway 1996), or parasitic infestation
during earlier developmental stages (Snajdr 1990a, b). A re-
view of the literature highlighted only one other malformed
styginid with distal fusion of two ribs, Bojoscutellum ob-
soletum (Snajdr, 1960) (Snajdr 1990b: fig. 2), and this is
attributed to parasitism (Snajdr 1990b). As there is no ev-
idence for parasitism, we propose that NHMUK PI I 1108
may have experienced a complicated moult due to its mac-
ropygous pygidium (see Snajdr 1960, 1990b; Erben 1967), or
had a genetic malfunction during early development, either
of which may have resulted in fused ribs. Determining the
impact of the malformation on the individual is complex.
However, as the disruption is minor, it likely would not
have led to significant functional impairment of the pygidial
region.

Epibionts.—Trilobite exoskeletons with encrusting an-
imals are important examples of organismal interactions
(see Prokop 1965; Morris and Rollins 1971; Sprinkle 1973;
Kesling and Chilman 1975; Brandt 1996; Taylor and Brett
1996; Kacha and Sari¢ 2009; Key et al. 2010; Vinn et al.
2017). Within the trilobites examined here, we report one
Calymene blumenbachii specimen (NHMUK PI In 65061,
Fig. 2) with epibionts resembling those on Flexicalymene
Shirley, 1936 (Brandt 1996: figs. 1.4, 1.6). This is an en-
crusting trepostome bryozoan forming a low mat with an
ovate zoarium preserved on the 3™ thoracic tergite. The
restricted encrustation region within the area bounded by
articulating sclerite margins suggests that the encrustation
occurred while the animal was alive (see Brandt 1996; Key
et al. 2010).

Conclusions

Novel records of trilobite abnormalities are explored herein
using Silurian and Devonian species. In doing so, we demon-
strate additional examples of injuries, teratologies and possi-
ble bryozoan interactions. This presents further insight into
trilobite paleoecology and sheds more light on how trilobites
recovered from such conditions.
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